Search results for "second order source separation"
showing 2 items of 2 documents
Blind Source Separation Based on Joint Diagonalization in R: The Packages JADE and BSSasymp
2017
Blind source separation (BSS) is a well-known signal processing tool which is used to solve practical data analysis problems in various fields of science. In BSS, we assume that the observed data consists of linear mixtures of latent variables. The mixing system and the distributions of the latent variables are unknown. The aim is to find an estimate of an unmixing matrix which then transforms the observed data back to latent sources. In this paper we present the R packages JADE and BSSasymp. The package JADE offers several BSS methods which are based on joint diagonalization. Package BSSasymp contains functions for computing the asymptotic covariance matrices as well as their data-based es…
Signal dimension estimation in BSS models with serial dependence
2022
Many modern multivariate time series datasets contain a large amount of noise, and the first step of the data analysis is to separate the noise channels from the signals of interest. A crucial part of this dimension reduction is determining the number of signals. In this paper we approach this problem by considering a noisy latent variable time series model which comprises many popular blind source separation models. We propose a general framework for the estimation of the signal dimension that is based on testing for sub-sphericity and give examples of different tests suitable for time series settings. In the inference we rely on bootstrap null distributions. Several simulation studies are…